
Using Cache to Reduce Power in Content-Addressable Memories (CAMs)

Kostas Pagiamtzis and Ali Sheikholeslami
Department of Electrical and Computer Engineering

University of Toronto, Canada
{pagiamt,ali}@eecg.toronto.edu

Abstract— We propose using caching to save power in content-
addressable memories (CAMs). By using a small cache along with
the CAM, we avoid accessing the larger and higher power CAM.
For a cache hit rate of 90%, the cache-CAM (C-CAM) saves 80%
power over a conventional CAM, for a cost of 15% increase in
silicon area. Even at a low hit rate of 50%, a power savings
of 40% is achieved. The proposed C-CAM is employed in the
design of a testchip demonstrating a 2.6 fJ/bit/search in a 0.18 μm
CMOS process.

I. INTRODUCTION

Content addressable memories simultaneously compare an
input word to all the contents of memory and return the
address of matching locations. CAMs with large capacities
speed up the operation of search-intensive tasks such as packet
forwarding and classification in routers, database lookups, and
compression [1], [2]. The main challenge in CAM design is
to reduce power while maintaining speed and low area.

Fig. 1 depicts the basic CAM circuit structure of a CAM
word which is made of CAM cells. A CAM cell compares
its stored bit against its corresponding search bit provided
on the search-line (SL). The combined search result for
the entire word is generated on the match-line (ML). The
match-line sense amplifier (MLSA) senses the state of the
ML and outputs a full logic swing signal. At the circuit
level, research has focussed on saving power by reducing
the ML and SL signal swing [3]–[5] or using low-power
current-based approaches [6], [7]. Even with these circuit
innovations, the simple CAM circuit structure of Fig. 1 has a
very high power consumption if it is used directly to construct
a large capacity CAM. Fig. 2 shows two previously proposed
CAM architectures to reduce power consumption: the pipeline
architecture [4] and the block-select architecture [5], [8]. The
pipeline architecture saves power by splitting the MLs into
several stages, each stage being activated only on the condition
that all its previous stages have matched the search data. Since
most words miss in early stages this scheme saves power. The
block-select architecture divides the CAM into several blocks
based on extra data bits (e.g., 2 data bits to select one of
4 blocks). Ideally, only a single block is active thus saving
power. Despite the progress of these architecture, the power
dissipation of large-capacity CAM is still too high.

This paper proposes a cache-CAM (C-CAM) that can poten-
tially reduce power consumption between 40-80% depending
on the cache hit rate. Fig. 3 represents a simplified view of the
proposed C-CAM, where the cache holds frequently accessed
CAM data. This caching concept is similar to that of caching
in processor systems. Unlike processor cache systems where

match-line

sense amp

(MLSA)

search-line (SL) match-line (ML)CAM cell

Fig. 1. CAM circuit structure.

pipe

stage1

pipe

stage2

block1 block2

block3 block4

pipeline architecture block-select architecture

control

Fig. 2. Block diagrams of pipeline architecture and block-select architecture.

cache

CAM

c
o

n
tr

o
l

Fig. 3. Simplified block diagrams of our proposed C-CAM.

the main purpose of the cache is to increase performance, the
purpose of caching CAM is to reduce power consumption. In
C-CAM, every search operation that results in a match from
the smaller cache saves power by avoiding a search in the
larger and higher-power CAM. In the remainder of this paper,
we demonstrate how power is saved using our testchip, and
discuss the trade-offs that affect the cache hit rate and the
overall power dissipation.

II. CACHE-CAM (C-CAM)

The power savings in a C-CAM implementation depends
heavily on the trade-off between the cache size and the cache
hit rate. To illustrate this trade-off, Fig. 4 plots the power
consumption of a 32k C-CAM system versus the cache size.
We plot the portion of power consumed by the cache, the
portion consumed by the CAM, and the total power. The

P-44-1

IEEE 2005 CUSTOM INTEGRATED CIRCUITS CONFERENCE

0-7803-9023-7/05/$20.00 ©2005 IEEE. 369

P
o

w
e

r
(n

o
rm

a
li

z
e

)

0

1

Cache Size

2k 4k

0.2

0.4

0.6

0.8

6k 8k 10k 12k 14k 16k

cam power
cache power
total power

Fig. 4. Power versus cache size for a C-CAM with 32k entries. The power
consumption is normalized to that of a conventional CAM with 32k entries.

reported power is normalized to the power dissipation of
a conventional 32k CAM. As expected, the cache power
consumption increases linearly with the cache size. The CAM
power, on the other hand, decreases with the cache size, due
to the increased cache hit rate and thus less frequent access to
the CAM. The total C-CAM power is at a minimum at about
the 4k cache size, and increases for larger cache sizes as the
cache hit rate levels off.

The plot of Fig. 4 does not include the overhead power due
to the cache replacement policy. The cache replacement policy
is one of the factors that determines the cache hit rate. Thus
a high-performance policy would reduce the CAM power in
Fig. 4 by avoiding misses that search the full CAM. The cost
of this reduction in CAM power is the power consumption
of the circuitry implementing the cache replacement policy.
Therefore we desire a cache-replacement that generates a
high cache hit rate while consuming little power. We have
incorporated a range of three cache replacement policies in
our C-CAM testchip to experimentally determine the trade-
offs (see Section IV).

III. TESTCHIP ARCHITECTURE

For the purpose of testing, we have combined the cache and
CAM onto a single die and fabricated a testchip in 0.18 μm
CMOS process that uses a 1.8 V nominal supply voltage.
Fig. 5 is a block diagram of the testchip architecture. The
two main blocks are the CAM, which has 160 entries of
144 bits, and the cache, which has 16 entries of 144 bits.
To minimize the number of input pins on the testchip, we
use a serial interface to load the CAM data into the CAM
BL shift registers at the top of the diagram. We choose the
appropriate wordline by serially loading a logic ‘1’ into the
WL shift registers. The WL shift registers along with the CAM
BL shift registers control the data written into the CAM. We
also use a serial interface to load the search data into the
cache SL shift registers shown at the bottom of the diagram.
The CAM SL registers and cache BL registers are responsible
for exchanging data between the CAM and the cache. The
operation of these registers will become apparent below in the
description of the three-stage pipeline. Just below the cache, in

W
L

 s
h

if
t

re
g

is
te

rs

Cache SL shift registers

CAM BL shift registers

160

Cache BL registers

CAM SL registers

Cache (16x144)

data in

c
o

n
tr

o
ll
e
r

search

Replacement policy

W
L

 s
h

if
t

CAM
(160x144)

Fig. 5. The testchip incorporates a CAM with 160 entries and a cache with
16 entries, both with 144-bit words. The CAM SL and cache BL registers
hold data moving between the CAM and the cache.

cache search n CAM-search n

cache search

cache write n

result n

CAM-search

n

n+1

n+2

out

cycle m cycle m+1 cycle m+2

cache search

result n-1result n-2

n-1 CAM-search n-1 cache write n-1

n-2 cache write n-2op

op

op

op

op

n+1 n+1

n+2

Fig. 6. Timing diagram illustrating the three-stage pipeline operation of the
testchip.

the diagram, is the replacement policy block that implements
three different replacement policies. The replacement policy
block (described in Section IV) feeds cache wordlines, which
can be bypassed and controlled by the cache WL shift registers
if necessary. The controller on the right of the diagram governs
the operation of the overall system by enabling a CAM search
operation in the event of a miss in the cache and enabling a
CAM write in the case of a successful CAM search.

The testchip operates with a three-stage pipeline as shown
in the timing diagram of Fig. 6. Each system search operation
takes a horizontal slot (labeled op n − 2, op n − 1, etc.),
with the bottom slot reserved for indicating when the output
is available. From the external point of view, we refer to a

P-44-2370

E
n

e
rg

y
 (

fJ
/b

it
/s

e
a

rc
h

)

13.2

2

6

8

12

14

2.6

10

4

12.4
CAM energy

Cache energy

Replacement
policy energy

Overhead
energy

conventional

CAM

(no cache)

160 entry-

CAM w/ 16

entry cache

(90% hit

rate)

32k entry-

CAM w/ 3.2k

entry cache

(90% hit

rate)

Fig. 7. Graph illustrating the energy savings using the caching technique.
Energy is plotted for a conventional CAM, the testchip configuration of a
160 entry CAM with 16 entry cache, and a larger 32k CAM with 3.2k entry
cache. Energy is shown for the case of a 90% hit rate.

search as a system search. A system search may be internally
composed of a cache search resulting in a match or a cache
search resulting in a miss followed by a CAM search resulting
in a match. In the timing diagram, we assume all system
searches cause a cache miss followed by match in the CAM.
At op n, for example, a system search takes three cycles to
complete (cycles n, n + 1, n + 2). In the first cycle (cycle
m), the search word is applied to the cache and is labeled
cache search n in the diagram. Since we assume a cache miss
in cycle m, in the next cycle the search word is loaded into
the CAM SL registers (of Fig. 5) and applied to the CAM.
This operation is labeled CAM-search n in the timing diagram.
Since the CAM search results in a match, in cycle m + 2 the
search result is both available externally and written back into
the cache. We see that in cycle m+2, the cache is accessed for
both a write by op n and a search by op n+2. By supporting
a cache search and write in a single cycle, we keep the system
search latency to only three cycles.

Fig. 7 compares the simulated energy of a C-CAM against
that of a conventional CAM. We plot the energy in fJ/bit/search
for a conventional CAM, the implemented testchip, and for
a larger CAM with 32k entries of 144 bits using a cache
with 3.2k entries. Both cached systems assume a hit rate of
90%. The energy savings for the testchip configuration with
the 160 entry CAM is 6%. The savings is small because of
the relatively large overhead due to the CAM SL registers
and cache BL registers and writes into the cache (called
overhead energy in the graph) and the overhead due to the
replacement policy. For the case of the larger 32k system,
the overhead energy and replacement policy energy do not
increase significantly with the size of the system, so that they
are amortized over a larger number of bits. Thus the savings
in power is 80% over the conventional CAM.

IV. CACHE REPLACEMENT IMPLEMENTATIONS

The cache replacement policy decides which cache entry
should be removed when a new entry is inserted into a full

clk
wl[0]

wl[14]

wl[15]

wl[13]

(a) Shift register cycles sequentially through each address.

wl[0]

wl[14]

wl[15]
34-bit PN

d
e

c
o

d
e

r

wl[13]33-bit PN

32-bit PN

31-bit PN

(b) PN sequence generators create a random sequence.

WL154-bit cntr
4

rst

global
4

write

ML15
incr

count
bus

c
m

p

ctrl

(c) A count at each cache location determines the least recently used
location.

Fig. 8. Cache replacement policy circuits for (a) sequential replacement, (b)
random replacement, and (c) LRU replacement.

cache. The replacement policy and characteristics of the input
data stream together determine the resulting cache hit rate for
a given cache size. A low-complexity replacement policy may
consume little power; however, it results in a low cache hit rate
leading to high overall system power dissipation. On the other
hand, a high-complexity replacement policy may consume so
much power that it overwhelms the savings resulting from the
high cache hit rate.

To explore this spectrum of replacement policies, we include
three cache replacement policies on the testchip: sequential
replacement, random replacement, and least-recently used
(LRU) replacement. The sequential replacement policy simply
increments an address counter sequentially to point to the
location of the new entry. We have implemented the sequential
replacement policy with a shift register, as shown in Fig. 8(a).
This implementation consumes little power but results in a
low hit rate. The random replacement policy chooses a random
cache location for any new cache entry. The implementation of
the random replacement policy consists of four pseudo-random
number (PN) sequence generators and a decoder, as shown in
Fig. 8(b). This implementation consumes slightly more power
than the sequential policy but generally results in an increased
hit rate. Finally, the LRU policy of Fig. 8(c) tracks the relative
time when each cache location receives a hit and replaces the
location that is least recently used. This policy is implemented
in the elementary form described in [9] and has the highest
complexity and power consumption compared to the other two
replacement policies, but offers a moderately higher cache hit

P-44-3 371

E
n

e
rg

y
 (

p
J

/w
ri

te
)

10

50

20

30

40
31.8

41.9
47.8

Sequential

Replacement

Policy

Pseudo-

Random

Replacement

Policy

Least-Recently

Used (LRU)

Replacement

Policy

Fig. 9. The energy per cache write used by the three cache replacement
policies implemented on the testchip.

rate than the random policy.
Fig. 9 plots the simulated energy consumption for the three

cache replacement policies implemented on the testchip. The
power is reported in units of pJ/write. After the cache is
initially filled, the cache replacement policies are active only
when there is a write to the cache. Since a cache replacement
occurs on every cache miss, the portion of cycles where a
cache write occurs is equal to the cache miss rate. The LRU
policy actually consumes power even during cache search
cycles (i.e. including cycles that do not have a cache write)
since LRU counters are updated even on cache searches. Thus,
for the LRU policy, there is an extra power consumption that
occurs on every search in addition to the power consumption
per write. However, this power consumption is small compared
to the other sources of overhead that are present on every cycle
(due to the CAM SL and cache BL registers).

V. TESTCHIP MEASUREMENT

Fig. 10 is an annotated photomicrograph of the fabri-
cated testchip. To save silicon area, the testchip includes
only 160 entries for CAM and 16 entries for cache. To
measure power contributions of each block separately, the
testchip employs a total of five separate power supplies (one
for each of CAM, cache, overhead, replacement policy, and
test circuitry). The replacement policy block contains three
different cache replacement policies each of which can be
independently enabled to measure their power consumption.
Our early measurement results indicate that the CAM portion
of the power is 10 times the cache portion, as expected. Also,
the power consumption of the LRU replacement policy is the
highest among the three policies implemented on the testchip.
Further power measurements are required to obtain the power
proportions of other components in this particular design.

VI. CONCLUSION

This paper proposes C-CAM which uses caching to save
power in CAM. Through simulation and early testchip mea-
surements, we show that a cache added to a 32k CAM can
save as much as 80% of power consumption for hit rates of
90%. Even for hit rates as low as 50% the power savings are
still 40%.

CAM

CAM BL & cache BL regs

cache

cache SL regs

W
L

 r
e

g
s

CAM BL regs

controller &

replacement

policy

Fig. 10. Photomicrograph of testchip fabricated in 0.18 μm CMOS process.

ACKNOWLEDGMENT

We thank Oleksiy Tyshchenko for aiding in chip verifica-
tion. Also, we gratefully acknowledge financial support from
the Natural Sciences and Engineering Research Council of
Canada (NSERC) and an Ontario Graduate Scholarship in
Science and Technology (OGSST) and resource for testchip
design, fabrication, and testing from the Canadian Microelec-
tronics Corporation (CMC).

REFERENCES

[1] T.-B. Pei and C. Zukowski, “Putting routing tables in silicon,” IEEE
Network Magazine, vol. 6, no. 1, pp. 42–50, January 1992.

[2] L. Chisvin and R. J. Duckworth, “Content-addressable and associative
memory: Alternatives to the ubiquitous RAM,” IEEE Computer, vol. 22,
no. 7, pp. 51–64, July 1989.

[3] H. Miyatake, M. Tanaka, and Y. Mori, “A design for high-speed low-
power CMOS fully parallel content-addressable memory macros,” IEEE
J. Solid-State Circuits, vol. 36, no. 6, pp. 956–968, June 2001.

[4] K. Pagiamtzis and A. Sheikholeslami, “A low-power content-addressable
memory (CAM) using pipelined hierarchical search scheme,” IEEE J.
Solid-State Circuits, vol. 39, no. 9, pp. 1512–1519, September 2004.

[5] G. Kasai, Y. Takarabe, K. Furumi, and M. Yoneda, “200MHz/200MSPS
3.2W at 1.5V Vdd, 9.4Mbits ternary CAM with new charge injection
match detect circuits and bank selection scheme,” in Proceedings of the
IEEE Custom Integrated Circuits Conference, 2003, pp. 387–390.

[6] I. Arsovski, T. Chandler, and A. Sheikholeslami, “A ternary content-
addressable memory (TCAM) based on 4T static storage and including a
current-race sensing scheme,” IEEE J. Solid-State Circuits, vol. 38, no. 1,
pp. 155–158, January 2003.

[7] I. Arsovski and A. Sheikholeslami, “A mismatch-dependent power alloca-
tion technique for match-line sensing in content-addressable memories,”
IEEE J. Solid-State Circuits, vol. 38, no. 11, pp. 1958–1966, November
2003.

[8] F. Zane, G. Narlikar, and A. Basu, “CoolCAMs: Power-efficient TCAMs
for forwarding engines,” in IEEE INFOCOM, vol. 1, 2003, pp. 42–52.

[9] V. C. Hamacher, Z. G. Vranesic, and S. G. Zaky, Computer Organization,
4th ed. Toronto: McGraw-Hill, 1996.

P-44-4372

