
EMPIRICAL PERFORMANCE PREDICTION FOR IFFT/FFT CORES FOR OFDM
SYSTEMS-ON-A-CHIP

Kostas Pagiamtzis and P. Glenn Gulak

Dept. of Electrical and Computer Engineering
University of Toronto

Toronto, ON M5S 3G4, Canada
{pagiamt,gulak}@eecg.toronto.edu

ABSTRACT

Quick and accurate prediction of area, speed, and power of IP
cores for SoC implementations reduces the design time and thus
the overall cost. Accurate performance estimation early in the de-
sign cycle also is valuable for identifying trade-offs in the differ-
ent blocks that make up an SoC. This work provides an empirical
estimation method for IFFT/FFT blocks in multicarrier (OFDM,
DMT) systems. The relative accuracy of the predictions allows the
comparison of implementation alternatives, and the absolute accu-
racy enables the prediction of the final performance of fabricated
cores. The methodology was verified through the fabrication of a
0.18 µm CMOS test chip. The methodology inefficiency factor
(MIF) is introduced as metric for evaluating the area efficiency of
a digital design flow.

1. INTRODUCTION

A large number of existing and emerging communications applica-
tions use multicarrier modulation or orthogonal frequency domain
modulation (OFDM) for data modulation. These applications in-
clude high-speed data communication over copper [1], video broad-
casting [2], in-building or fixed wireless LAN networking [3], and
power line communication. Many of these applications are imple-
mented using a system-on-a-chip (SoC) solution.

The fast Fourier transform (FFT) is the central arithmetic ker-
nel of OFDM systems. Quick and accurate performance prediction
of a variety of specific FFT configurations is valuable in the mul-
ticarrier SoC design process. The FFT is briefly described below
followed by the discussion of an empirical estimation methodol-
ogy and its evaluation with a 0.18 µm CMOS test chip.

2. BACKGROUND

In multicarrier modulation, data signals are modulated on a num-
ber of carriers rather than on a single carrier as in traditional AM
or FM radio systems. Typically, the carriers are orthogonal and the
scheme is referred to as OFDM. The FFT can be used to efficiently
perform the modulation of data onto orthogonal carriers.

Financial support was provided by an Ontario Graduate Scholarship in Sci-
ence and Technology and a Natural Sciences and Engineering Research
Council of Canada scholarship. Chip fabrication, CAD tool access, and
support were provided by the Canadian Microelectronics Corporation.

x[0] X[0]

x[1] −1
X[4]

x[2] −1
X[2]

x[3] −1

W2

−1
X[7]

x[4] −1
X[1]

x[5] −1

W1

−1
X[5]

x[6] −1

W2

−1
X[3]

x[7] −1

W3

−1

W2

−1
X[7]

Figure 1: Signal flow graph of an 8-point, decimation-in-
frequency, radix-2 FFT.

2.1. Fast Fourier Transform

The discrete Fourier transform (DFT) is a mapping of a discrete
set of samples (or points) from the time domain to the frequency
domain. A well-defined inverse mapping, the inverse FFT (IFFT)
also exists. The N -point DFT and the inverse DFT (IDFT) are
defined as

X[k] =

N−1∑

n=0

x[n]W kn
N and (1)

x[n] =

N−1∑

n=0

X[k]W−kn
N . (2)

The symbol n denotes the discrete time index, k is the discrete
frequency index, x[n] is the time-domain sequence, X[k] is the
frequency-domain sequence, andWN = e−j(2π/N) is the complex-
valued twiddle factor where j =

√−1. The DFT and IDFT im-
plemented naively as indicated by (1) and (2) have O(N2) time
complexity. The name FFT refers to a class of algorithms that ef-
ficiently implement the DFT in O(N log N) time. The efficiency
of FFT algorithms comes from the fact that the DFT can be recur-
sively decomposed into smaller DFTs until trivial one-point DFTs
are reached. The signal flow graph of an 8-point FFT is displayed
in Figure 1. The open circles represent complex-valued addition,
and a number beside a directed edge indicates complex-valued
multiplication. Reference [4] provides a comprehensive introduc-
tion to the FFT.

0-7803-7523-8/02/$17.00 ©2002 IEEE
I-583

0-7803-7524-6/02/$17.00 ©2002 IEEE

aR bR aI bI aR bI aI bR

× × × ×
− +

cR cI

(a) 2-adder, 4-multiplier implementation.

aR aI bR bI aI bR aR bI

+ − ×
β

×
γ×

α

• •
−γ−β

+ +

cR cI

(b) 5-adder, 3-multiplier implementation.

Figure 2: Data flow in two complex multiplier implementations
from real-valued components.

2.2. Multicarrier Modulation

At the transmitter of an OFDM system, data are apportioned in
the frequency domain and an IFFT is used to modulate the data
into the time domain. The FFT output data are guaranteed to be
real-valued if conjugate symmetry is imposed on the input data.
In the receiver, an FFT is used to recover the original data. The
FFT allows an efficient implementation of modulation of data onto
multiple carriers [5]. Due to the similarity between the forward
and inverse transform apparent in (1) and (2), the same circuitry,
with trivial modifications, can be used for both modulation and
demodulation in a transceiver.

2.3. A Plethora of Configurations

The are a variety of algorithmic, architectural, resource alloca-
tion and scheduling alternatives in the design of an FFT. Algo-
rithmic choices in FFT implementations including whether the re-
cursive decomposition (or decimation) is performed in time or
in frequency, the radix (the number of sub-DFTs per decompo-
sition stage). Radix-2, radix-4, radix-8, split-radix (a combination
of radix-2 and radix-4 approaches) and even mixed-radix imple-
mentations are possible [4]. After algorithmic choices have been
made, there are a variety of architectural choices. An example
of the choices at the architectural level is the implementation of
the multiplication operation. One possible decomposition of the
complex multiplication cR + jcI = (aR + jaI) × (bR + jbI)
is the straightforward decomposition displayed in Figure 2(a) that
requires 4 real-valued multipliers and 2 real-valued adders. Al-
ternatively, as depicted in Figure 2(b), the intermediate products
α = (aR +aI)(bR−bI), β = aIbR and γ = aRbI are computed,
then the result is cR + jcI = (α − β + γ) + j(β + γ). The latter
implementation potentially reduces overall area depending on the
relative area of the multipliers and adders, whereas the former im-

plementation is faster due to the shorter critical path. A CORDIC
implementation of the multiplier/rotator may be a good fit because
the twiddle factor multiplier, WN = e−j(2π/N), is a rotation in
the complex plane.

There are three main classes of FFT resource allocation and
schedulings: i) pipeline (row-oriented) FFTs, ii) column FFTs, and
iii) fully-parallel FFTs [6]. In categories i) and ii) a portion of the
FFT flow graph is implemented and the computation is scheduled
on those resources. Extra resources are usually required to enable
to the proper scheduling. In pipeline FFTs, for example, FIFO
queues of varying sizes are needed to properly synchronize the
incoming data.

The vast array of implementation options for FFTs at the algo-
rithmic, architectural, and resource allocation and scheduling lev-
els is a strength due to the flexibility and a drawback because com-
paring alternatives has traditionally been done at a very course-
grained level. However, the basic building block of the FFT, the
butterfly, and the regular interconnection of butterflies make the
FFT highly amenable to the empirical prediction technique pre-
sented in the paper and in turn enable the comparison of a diverse
set of implementations.

2.4. Analytical Evaluation

Traditionally, the discovery of a new FFT algorithm is character-
ized in terms of the number of adders, multipliers and the total
memory footprint. A qualitative analysis of the routing sometimes
given. Unfortunately, there is no clear mapping from the analytical
description to VLSI performance estimates, making the evaluation
of tradeoffs between various algorithms and architectures difficult.

Analytical investigation has shown that FFT VLSI implemen-
tations have an optimal asymptotic lower bound area·time2 com-
plexity ofΩ(N2 log2 N) [7]. This analytical technique is valuable
for a coarse-grained comparison of various algorithms and archi-
tectures but the asymptotic nature of the bound makes it difficult
to use as an evaluation or estimation tool for detailed (VLSI) im-
plementations.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T
ot

al
 A

re
a

(m
m

2)

Numbers of Stages in FFT

8-bit datapath
12-bit datapath
16-bit datapath

Figure 3: Area comparison for 8-, 12- and 16-bit radix-2 FFT im-
plementations.

I-584

W

8-stage
FIFO

2-stage
FIFO

1-stage
FIFO

4-stage
FIFO

radix-2
butterfly

radix-2
butterfly

radix-2
butterfly

radix-2
butterfly...,x[1],x[0] X[0],X[8],...

-j -j

0123

clk

Figure 4: Block diagram of 16-point radix-22 pipeline FFT [8].
The control is implemented by a 4-bit counter.

3. EMPIRICAL BOTTOM-UP ESTIMATION

The shortcomings of the analytical evaluation and estimation meth-
ods can be overcome by using empirical prediction. The reg-
ular structure of FFT implementations makes them particularly
amenable to these methods. FFT blocks are composed of real-
valued adders, real-valued multipliers, commutators, and FIFO
queues (implemented by an array of registers or SRAM with sim-
ple collar circuitry). A library of adders, multipliers, commutators,
and register arrays were synthesized, placed, and routed for a va-
riety of bit resolutions in a 0.18 µm 1P6M CMOS process. The
design flow was automated using scripts; therefore, the effort re-
quired to re-generate these components for a different technology
is minimal. In addition, a memory compiler was used to gener-
ate estimates for all possible single- and dual-port, power-of-two
address sizes with several bit resolutions. A total of 155 memory
estimates were generated.

The speed, area, and power consumption data for the library
components were compiled in a spreadsheet to generate estimates
for FFT blocks. The timing estimates were generated by assum-
ing a course grained pipelining between blocks (in addition, some
of the multiplier blocks were internally pipelined). The minimum
clock period is therefore equal to the longest flop-to-flop path in-
cluding latching overhead. The power consumption and area are
calculated by adding up the values for each individual component.
Once the subcomponent data have been garnered, estimation of a
large number of specific architectures and a variety of word sizes
and FFT lengths can be generated in a matter of minutes. Figure 3
provides an example of the type of data that can be generated. The
figure depicts the area required for radix-2 FFT implementations
with datapath bit widths of 8-, 12-, and 16-bits for a range of FFT
lengths (the length of the FFT isN = 2q where q is the number of
stages).

Relative accuracy of the performance predictions for compar-
ison of FFT implementations is inherent in the method of genera-
tion of the library components. A test chip was fabricated to verify
the absolute accuracy of the estimation methodology.

4. RADIX-22 PIPELINE FFT TEST CHIP

For OFDM applications with a large number of carriers and real-
time requirements, a pipeline FFT is a popular architecture. A
16-bit, 1024-point implementation of the radix-22 pipeline FFT
presented in [8] was implemented in a 0.18 µm test chip to verify
the estimation technique. A block diagram of a shorter, 16-point,
radix-22 pipeline FFT is depicted in Figure 4 excluding twiddle
factor circuitry. The same architecture can be extended to any

Parameter Units Estimated Measured

Min. Period ns 6 8.8
Power mW/MHz 3.3 2.3
Area mm2 2.07 4.38

Table 1: 16-bit, 1024-point radix-22 estimates and test results.

number of stages. This architecture features fewer multipliers than
a traditional radix-2 pipeline FFT. The basic observation that mo-
tivated this pipeline architecture is that the complex-valued multi-
plications in the FFT can be reorganized in the signal-flow graph.
In the radix-22 FFT the multiplications are organized so that only
every other stage contains nontrivial complex multiplications (i.e.
terms of the form W α). Complex multiplication by −j is trivial
since it can be implemented in digital hardware by simple inver-
sion and cross wiring.

The empirical bottom-up estimates and measured performance
parameters for the test implementation are listed in Table 1. The
timing estimates do not take into account the clock tree insertion
delay, which, in the final chip, was rather large due to the chip’s
global clock pad driver. The estimated clock insertion delay of
1.2 ns was subtracted from the measured minimum period.

The timing and power estimates are reasonably accurate given
that they are available before HDL code has been written. The
discrepancy in the minimum period estimate occurs because the
subcomponents are each separately synthesized whereas the chip
was synthesized in a single top-down compile (which is appropri-
ate for the size of the block). An empirical cumulative distribution
plot of the (flop-to-flop) slack is displayed in Figure 5. The slack
in a flop-to-flop timing path is the difference between the period
and the amount of time actually used. A positive amount of slack
in a path serves as a guard interval, whereas a negative slack in-
dicates a timing violation. A circuit with one ore more paths with
negative slack cannot operate at the target frequency. It is evi-
dent from the slack plot that, after layout, the paths are pushed to
the left, reducing slack with respect to the pre-layout paths. This
timing degradation does not occur for the relatively small library
components that are easily placed and routed under their respec-
tive constraints. The timing degradation in the FFT block is due
to the lack of placement information in the synthesis tool that was
used to generate the pre-layout netlist. However, the magnitude of
the pre- versus the post-layout mismatch is not unusual a 0.18 µm
CMOS technology.

The power consumption of each subcomponent was separately
simulated assuming a 50% input transition probability which is
somewhat higher than the actual transition probabilities. This ac-
counts for the slightly pessimistic power consumption estimate.

Area Predicted (mm2) Actual (mm2) MIF

Memory blocks 1.64 3.03 1.9
Standard cells 0.43 1.35 3.1
Empty Space — 2.17 —

Table 2: Area breakdown and MIF for the FFT chip.

I-585

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

-0.4 -0.2 0 0.2 0.4 0.6 0.8

C
um

ul
at

iv
e

Pe
rc

en
ta

ge
 o

f P
at

hs

Slack Ratio

pre-layout
post-layout

Figure 5: Slack ratio empirical cumulative distribution plot for
FFT chip. The slack ratio is the path slack time divided by the
target clock period (6.7 ns in this case).

4.1. Methodology Inefficiency Factor

The final area of a digital chip is highly dependent on the amount
of design time spent performing place and route and the quality
of the digital design flow methodology. Since each subcompo-
nent was separately placed and routed, the subcomponent area
estimates are lower bounds and thus the final area estimate can
be viewed as a baseline area. The ratio of the final layout area
to the estimated baseline area for a given FFT block is used to
evaluate and characterize the design methodology used to produce
the block. We call this ratio the methodology inefficiency fac-
tor (MIF), with MIF = 1.0 being the ideal. The MIF for the stan-
dard cells and memory blocks are displayed separately in Table 2
(the chip die photo is displayed in Figure 6). The large memory
MIF is due to the power rings surrounding the memories (which
are included in the memory area). A more refined power grid lay-
out could significantly reduce the memory MIF. Nevertheless, the
memory MIF is a good characterization of the current memory
power ring methodology. The standard cell MIF is large because
space was used liberally due to design time constraints.

Once a chip design has been completed in a given technology,
and an MIF has been calculated, the area of future designs within
the same class of applications is predictable. Since the memory
MIF and the standard cell MIF are separately calculated, imple-
mentations with a range of RAM usage can be have their area more
precisely estimated.

5. CONCLUSION

An empirical, bottom-up estimation methodology was presented.
First, a library of FFT subcomponents in a 0.18 µm technology
was created. Then, post-layout area, speed, and power data of FFT
library components were used to generate the FFT performance
estimates. The power and timing estimates for a specific test im-

Estimated Pre-layout Post-layout Measured

6.0 ns 6.7 ns 7.9 ns 8.8 ns

Table 3: Clock period at various design stages.

Figure 6: Bonded die photomicrograph of 16-bit, 1024-point
radix-22 FFT chip. The chip die area is 4.3 mm × 3.1 mm.

plementation were shown to be relatively accurate. In the case of
area estimation, the predicted value serves as a baseline area, and
the MIF metric can be used to characterize and evaluate a digital
design flow. Finally, the estimation method is also applicable to
locally connected structures related to the FFT, including bitonic
sort, convolution, polynomial multiplication, and the Viterbi algo-
rithm [9]. A similar methodology could also be applied to Galois
field arithmetic components for error control codes and cryptogra-
phy systems.

6. REFERENCES

[1] International Telecommunication Union (ITU). Asymmetri-
cal Digital Subscriber Line (ADSL) Transceivers, ITU-T, Rec.
G.992.1 edition, February 1999.

[2] European Telecommun. Standards Inst. Digital Video Broad-
casting (DVB): Framing structure, channel coding and mod-
ulation for digital terrestrial television, draft EN 300 744
V1.2.1 (1999-01) edition, January 1999.

[3] LAN/MAN Standards Committee of the IEEE Computer So-
ciety. High-speed Physical Layer in the 5 GHz Band, IEEE
Std 802.11a-1999 edition, 1999.

[4] P. Duhamel and M. Vetterli. Fast Fourier transforms: a tutorial
review and a state of the art. Signal Processing, 19:259–299,
April 1990.

[5] John A. C. Bingham. Multicarrier modulation for data trans-
mission: An idea whose time has come. IEEE Communica-
tions Magazine, 28(5):5–14, May 1990.

[6] Weidong Li and Lars Wanhammar. A pipeline FFT processor.
In IEEE Workshop on Signal Processing Systems, pages 654–
662, 1999.

[7] Clark D. Thompson. Fourier transforms in VLSI. IEEE Trans-
actions on Computers, C-32(11):1047–1057, November 1983.

[8] Shousheng He and Mats Torkelson. A new approach to
pipeline FFT processor. In 10th Parallel Processing Sympo-
sium, pages 766–770, 1996.

[9] P. Glenn Gulak and Thomas Kailath. Locally connected VLSI
architectures for the Viterbi algorithm. IEEE Journal on Se-
lected Areas in Communications, 6(3):527–537, April 1988.

I-586

